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A General Form for the Dissipation
Length Scale in Turbulent Shear Flows

By J. C. R. HUNT 1 P. R. SPALART 2 and N. N. MANSOUR 2

It has been found that, for a wide range of turbulent wall- bounded shear flows

with mean velocity profile U(y), the length scale Lc determining the dissipation

is approximately described in terms of distance from the wall y, the mean shear

dU/dy, and the variance of the normal component of turbulence v 2, by the formula

AB dU/dy
L_ 1 _ -- + As

where L, = _l(v2) 3/_. To match with shear-free boundary layers, AB --_ 0.27, and

with the log layer, As -_ 0.46. The shear flows tested here were: boundary layers

over a flat plate, sink flow, oscillatory flow and channel flow. The use of _ as a

velocity scale minimizes the effects of Reynolds number. However, the formula fails

within a distance of order L, for the regions where dU/dy = O.

1. Introduction

The estimation of the rate of dissipation of turbulent energy _ is a critical feature

of many computations of turbulent shear flows. However, current methods based

on a heuristic differential equation for _ are not always accurate and almost never

understood in physical terms. In particular, the relative effects of the distance (y)

from a boundary and the shear dU/dy on the eddies is not clear.

The essential point in thinking about the rate of dissipation c is that it is con-

trolled by the steepest gradients of the energy-containing eddies. Therefore we need

to be able to define the smallest integral or macroscales.

The aim of the research described here is to specify the relevant velocity compo-

nents and macroscale L, that enable _ to be estimated. (For previous discussion,

see Hunt, Stretch & Britter, 1986.)

Recent theoretical and experimental research on shear-free turbulent bound-

ary layers (Hunt, 1984) ("SFBL", where dU/dy __ 0), has demonstrated how the
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smallest "macro" scale is that of the normal velocity component t (2) and that"11

L(2) .._ 1.7y. If we are to use this length to estimate e, we recall that in a SFBL.
11 --

is approximately invariant with distance from the wall (0e/ay __ 0). It is also

found by theoretical (or scaling) arguments that v--5-= CBe2/ay 2/s, where CB is a

constant. The linear analysis of Hunt (1984) gives a value for CB = 1.8, while the

measurements in the atmospheric convective boundary layer give CB -- 2.5.

Therefore in the SFBL it is natural to define tile dissipation scale as

L, (fi)3/2 ,_3/2: "_ t_B y (1.1)

It is convenient to express (1.1) as

L[ 1 = ABy -1 (1.2)

So we take AB as ranging from (1/2.5) 3/2 = 0.25 to (1/2.0) 3/2 = 0.35. Note that

the horizontal scale of the vertical fluctuations L_? in the SFBL is about 1.7y, so

L, is about r (2)
_11 "

By contrast in a uniform shear, the length scales, including L,, are largely deter-

mined by the shear dU/dy and the velocity fluctuations, so that

L,=Csv /(dv/dy)

where Cs is a dimensionless parameter of order unity. Recent numerical simulations

on the time evolution of turbulence in a homogeneous shear flow by Rogers et at.

(1986), Lee, Kim & Moin (1987), and Rogallo (1981) show that the parameter Cs

depends on the initial conditions (in particular L?l)(dU/dy)/x/F_, and the total

strain (=t dU/dy). However, for a wide class of actual shear flows the effective

value of t dU/dy only varies over a range of about 3 (Townsend, 1976). So we can

expect that there is an approximately constant value for

C, = L, IdU/dyl _ 1 (1.3)
(_5)112 As

What happens in a shear flow near a boundary? Dissipation of turbulent energy

is driven by the straining of small eddies by slightly larger eddies. So the dissipation

length scale L, depends on the smaller of the two effects of the boundary and the

shear. So we take the harmonic mean of (1.2) and (1.3)

L[ _ = A___B+ AsI dU/dy l (1.4)
y
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Taking AB --_ 0.27, then As can be calculated from the log layer (assuming at

high Reynolds number _ = 1.3u.), and a local equilibrium between production

and dissipation of turbulence energy. We obtain

As _- 0.46 (1.5)

In the research performed at the CTR, L, has been computed using the data

from direct simulations of a number of wall-bounded flows. We make a comparison

here with (1.4), using (1.1) to define L,

2. Preliminary results

In Fig. la Lc/_ is plotted against y/g for the flat plate boundary layer (Spalart,

1986b); in Fig. lb, for the sink boundary layer (Spalart, 1986a); in Fig. 2 for the

oscillating boundary layer (Spalart &: Baldwin, 1987), where the flow reverses, and

in Fig. 3 for the channel flow (Mansour, Kim & Moin, 1987).

Where the results for L_ have been computed for different values of tile Reynolds

number (e.g., Fig. 1), the normalization (1.1) reduces the profiles of L,/_5 to a

form that is approximately independent of Re. If L, were defined on the basis of

e/(u2_ij_3/2, this would not be so. In Figs. 1 through 3, we have used the technique

of extrapolating the values of u 2 to their values as Re _ oo, by suitable extrapola-

tion of the high wave number spectrum (Spalart, 1986b; Perry et al., 1986). This

method apparently works well even for transitional turbulence, such as occurs in

the oscillating boundary layer near reversal.

All the results agree well in the log regions (where L, is proportional to y) for

which the coefficient AB was defined. But the results show that the formula (1.4)

applies well beyond tile log region. This implies that dU/dy is controlling the scale.

Tlle structure of turbulence nmst be rather similar if the constant is so good! But.,

note that, at the edge of the boundary layer or in a reversing boundary layer, where

dU/dy = 0, the model is not satisfactory. The local turbulent scale is determined

by advection of evolution from previous time. (Effects that are approximately in-

corporated in the e equation!)

3. Further work

Apparently the proposed formula (1.4) has some generality. But we still do not

know what aspect of the turbulent structure exactly corresponds to the length L,.

The researdl of Lee and Hunt (in progress) on R.D.T. near a wall may help explain

more about the relative role of blocking and shear, as will the related research on

two-point correlations.

The use of R.D.T. to study the linear interactions will not really tell us how

shear and blocking affect the nonlinear transfer. That may only come from more
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detailed computations and models of the spectra (e.g., by the studies of scale transfer

by Schiestel, D.I.A. by Yoshizawa, or the large-scale/small-scale interactions using

R.D.T. by Kida & Hunt).
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FIGURE 1. Distribution of the dissipation length scale as function of the distance
to the wall.

a) Flat-plate boundary layer.

formula Eq. 1.4: -- Ro = 670, ....

Simulations (v-_3/_/e): n Ro = 670,

b) Sink flow boundary layer.

formula Eq. 1.4: -- K = 2.5 × 10 -6, ....

Simulations (_-_3/2/e): n K = 2.5 × 10 -6,

Ro = 1410.

o Ro = 1410.
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FIGURE 2. Oscillating boundary layer, Re = 1000. Formula Eq. 1.4: ---

Simulations (_3/2/c): •
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FIGURE 3. Channel Flow, Re6 -- 3,300. Formula Eq. 1.4:

(,7_/_-/_):o

; Simulations


